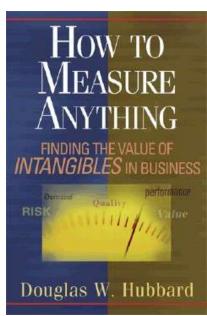


## How to Measure Anything


# Doug Hubbard Expert The Advisory Council

www.TACadvisory.com



## **How to Measure Anything**

- I conducted 55 major risk/return analysis projects so far that included a variety of "impossible" measurements
- I found such a high need for measuring difficult things that I decided I had to write a book
- The book will be released in July 2007 with the publisher John Wiley & Sons
- This is a "sneak preview" of many of the methods in the book





#### A Few Examples

| Org.                | Problem                                                                 | Findings                                                                         | Benefit                                                                     |
|---------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| EPA                 | Assess value of<br>"Safe Drinking<br>Water Information<br>System" SDWIS | Identified and measured previously unnoticed risks & benefits                    | \$15 million improved NPV from reprioritizing functions                     |
| US Marine<br>Corp   | Forecast fuel use for the battle field                                  | Found factors that better correlated to actual fuel use                          | \$50 million savings per year by reducing unnecessary battlefield inventory |
| American<br>Express | Analyze ROI of a dedicated test network for new applications            | Determined key metric<br>to prioritize<br>replacements was<br>downtime reduction | \$2 million improved net benefit reprioritizing rollout                     |

Source: Hubbard Decision Research



## A Few More Examples

- Risk of IT
- The risk of obsolescence
- The value of a human life
- The value of saving an endangered species
- The value of public health
- The value of IQ points lost by children exposed to methyl-mercury

- The value of better security
- The future demand for space tourism
- The value of better information
- The value of information availability
- Productivity and performance



#### Three "Measurement Muses"

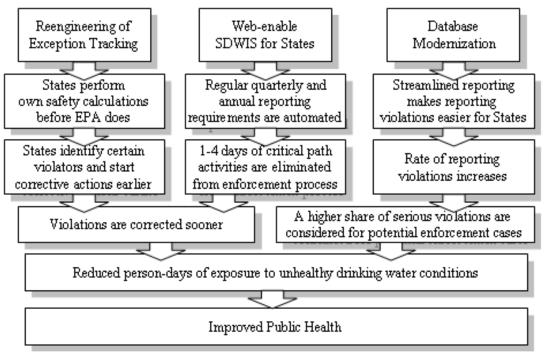
- Eratosthenes measured the Earth's circumference to within 1% accuracy
- Enrico Fermi the physicist who used "Fermi Questions" to break down any uncertain quantity (and was the first to estimate the yield of the first atom bomb)
- Emily Rosa the 11 yr old who was published in JAMA (youngest author ever) for her experiment that debunked "therapeutic touch"



## Three Illusions of Intangibles (The ".com" approach)

- The perceived impossibility of measurement is an illusion caused by not understanding:
  - the Concept of measurement
  - the *Object* of measurement
  - the *Methods* of measurement
- See my "<u>Everything Is Measurable</u>" article in CIO magazine




#### Before We Measure We Ask:

- Why do you want to know?
- How much do you know now?
- What is the value to additional information?



## Why Do You Want To Know?

- The EPA needed to compute the ROI of the Safe Drinking Water Information System (SDWIS)
- Why?: To prioritize three specific upgrades
- We built a spreadsheet model that connected the expected effects of the system to relevant impacts



Source: Hubbard Decision Research

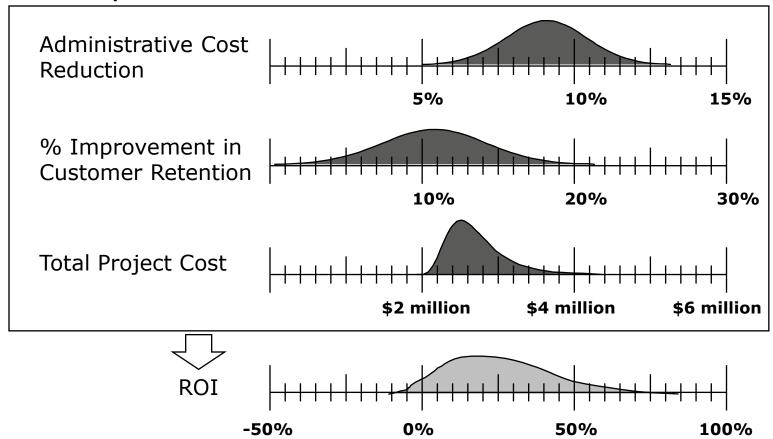


### Uncertainty, Risk & Measurement

- Measuring Uncertainty, Risk and the Value of Information are closely related concepts, important measurements themselves, and precursors to most other measurements
- The "Measurement Theory" definition of measurement:
   "A measurement is an observation that results in
   information (reduction of uncertainty) about a
   quantity."
- We model uncertainty statistically



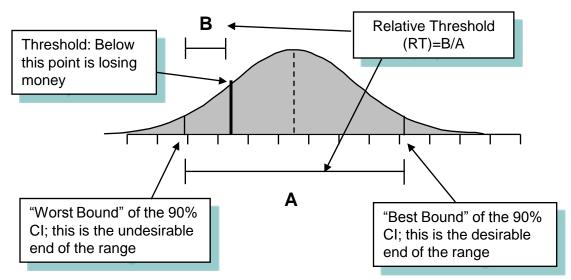



#### **How Much Do You Know Now?**

- Most people can be taught how to subjectively assess their current state of uncertainty
- A small amount of training (three hours) can significantly improve calibration of estimates
- Comparisons of actual measures to original calibrated estimates show calibration works



## Risk/ROI w/ "Monte Carlo"


#### **Inputs**





#### What Is The Value of Measurement?

- As a rule of thumb, the value of information is simply the cost of being wrong times the chance of being wrong
- The value of information on a range often just comes down to where the "threshold" is within the range.



Source: How to Measure Anything: Finding the Value of 'Intangibles' in Business



## The IT(?) Measurement Inversion

Least Relevant to Receives Most **Approval Decisions Attention** Costs Initial Development Costs Relevance Ongoing Maintenance/Training Typica Costs **Benefits** conomic A specific benefit (productivity, Attention sales, etc.) Utilization (when usage starts ш and how quickly usage grows) Chance of Cancellation Most Relevant to Receives Least **Approval Decisions** Attention

See my article "The IT Measurement Inversion" in CIO magazine



## **Next Step: Observations**

- Now that we know what to measure and what it's worth to measure, we can think of observations that would reduce uncertainty
- The value of the information limits what methods we should use, but we have a variety of methods available
- Take the "Nike Method": Just Do It don't let imagined difficulties get in the way of starting observations



## The Power of Sampling Methods

- Several clever sampling methods exist that can measure more with less data than you might think
- Examples: estimating the population of fish in the ocean, estimating the number of tanks created by the Germans in WW II, extremely small samples, etc.

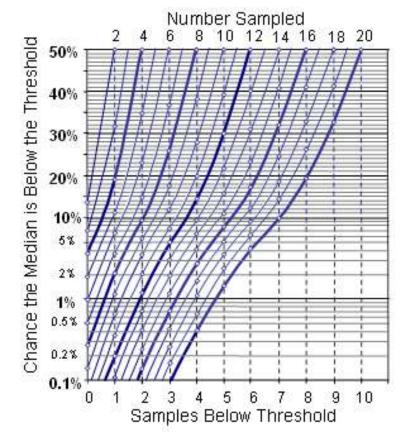
| Month of Production | Intelligence | Statistical | Actual (Based on captured |
|---------------------|--------------|-------------|---------------------------|
|                     | estimate     | estimate    | documents after the war)  |
| June 1940           | 1000         | 169         | 122                       |
| June 1941           | 1550         | 244         | 271                       |
| August 1942         | 1550         | 327         | 342                       |

Source: How to Measure Anything: Finding the Value of 'Intangibles' in Business



#### The "Math-less" Statistics Table

| Sample<br>size | nth largest &<br>smallest<br>sample value | Actual<br>confi-<br>dence |
|----------------|-------------------------------------------|---------------------------|
| 5              | 1 <sup>1t</sup>                           | 93.8%                     |
| 8              | 2 <sup>nd</sup>                           | 93.0%                     |
| 11             | 3 <sup>rd</sup>                           | 93.5%                     |
| 13             | 4 <sup>th</sup>                           | 90.8%                     |
| 16             | 5 <sup>th</sup>                           | 92.3%                     |
| 18             | 6 <sup>th</sup>                           | 90.4%                     |
| 21             | 7 <sup>th</sup>                           | 92.2%                     |
| 23             | 8 <sup>th</sup>                           | 90.7%                     |


- Measurement is based on observation and most observations are just samples
- Reducing your uncertainty with random samples is not made intuitive in most statistics texts
- This table makes computing a 90% confidence interval easy

Source: <u>How to Measure Anything: Finding the Value of 'Intangibles' in Business</u>



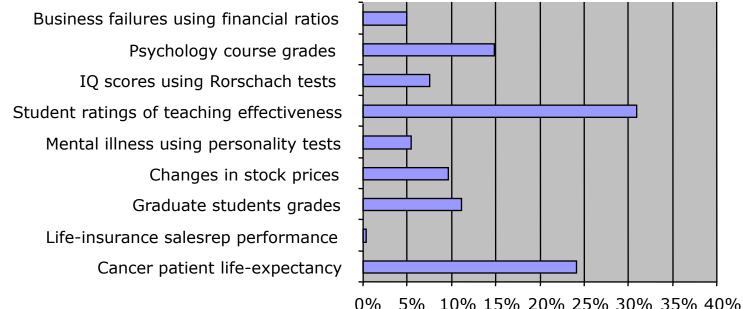
## Measuring to the Threshold

- Measurements have value usually because there is some point where the quantity makes a difference
- Its often much harder to ask "How much is X" than "Is X enough"



Source: <u>How to Measure Anything: Finding the Value of 'Intangibles' in Business</u>




## The Simplest Method

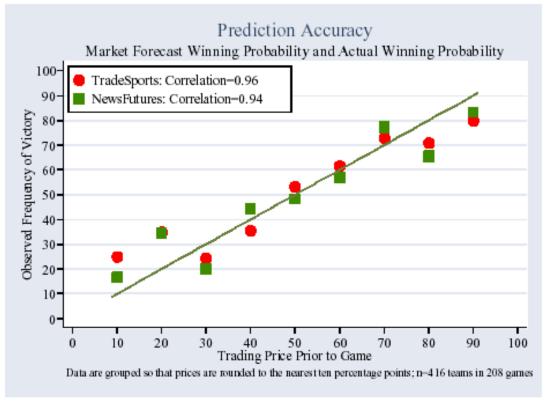
- "Bayesian" methods in statistics use new information to update prior knowledge
- Bayesian methods can be even more elaborate that other statistical methods BUT...
- It turns out that calibrated people are already mostly "subjectively Bayesian"



## Improving on Human Judgment

- The "Lens Model" is one method used to improve on expert intuition
- The chart shows the reduction in error from this method on intuitive estimates
- In every case, this method equaled or bettered the judgment of experts



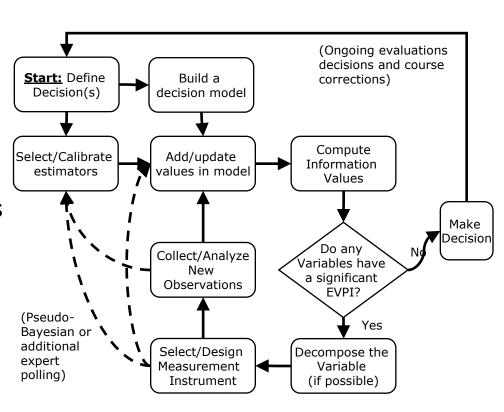

Source: <u>How to Measure Anything: Finding the Value of 'Intangibles' in Business</u>

Reduction in Errors



#### **Prediction Markets**

- Simulated trading markets are a proven method of generating probabilities for uncertain events
- Research shows that it works even without purely monetary reward systems




Source: Servan-Schreiber, et. al. Electronic Markets, v 14-3, September 2004



## **Applied Information Economics**

- The basic AIE model was used in several of these examples where "intangibles" dominated the decision
- Even though it has been used on problems as different as...
  - IT portfolio prioritization
  - Forecasting fuel for the battlefield
- ...the same basic process applies



Source: <u>How to Measure Anything: Finding the Value of 'Intangibles' in Business</u>



## **Final Tips**

- Learn how to think about uncertainty, risk and information value in a quantitative way
- Assume its been measured before
- You have more data than you think and you need less data than you think
- Methods that reduce your uncertainty are more economical than many managers assume
- Don't let "exception anxiety" cause you to avoid any observations at all
- Just do it



#### **More Information:**

- Several of my articles in CIO magazine, InformationWeek and other periodicals discuss measurement - especially the risk and value of IT. All of them are linked on www.hubbardresearch.com.
- The book will have its own web site at <u>www.howtomeasureanything.com</u>. The site will be online before the book is released in July. It will include detailed examples and spreadsheets mentioned in the book as well as discussion groups for readers.
- Contribute to "The Measurement Challenge" by sending us your examples of difficult measurements.